
www.manaraa.com

LECTURE 1: Software Engineering

Trends and Challenges



www.manaraa.com
2

Topics

• Introduction to Software Engineering
– Trends in Software Engineering

– Challenges in Software Engineering



www.manaraa.com
3

Software Domain

• Software is more and more pervasive and it 
cannot be considered anymore as a minor 
element of a complex systems. 

• In domains like cloud computing, big data, 
Internet of Things (IoT), Cyber-Physical 
Systems (CPS) it is the core element.



www.manaraa.com
4

Software Domain

• Software does not require complex machinery 
to be developed, it can be created on personal 
computers that today are accessible to almost 
all people in the society. 

• This gives the impression that it can be 
developed by anyone with good technical skills 
and willing to learn some simple-to-use 
programming language



www.manaraa.com

Trends in Software Engineering

• Software Engineering methods and tools has 
evolved over past years from stand alone 
applications to a current trend of system of 
systems;

• These is mainly due to adoption to daily 
changes in user requirements and also 
technology advancement over years

5



www.manaraa.com

Standalone Applications

• Applications that run on a local computer

• Normally they have all functionality and no 
need to be connected to network.

• Examples are; office applications, CAD 
programs, photo manipulation software and etc

6



www.manaraa.com

Interactive transaction-based 
applications

• This applications are normally executed on a 
remote computer and can be accessed by users 
on their own PCS/terminals

• These include web apps, e-commerce, business 
systems, cloud based systems (mail, photos 
sharing)

• Apps normally generates a large amount of 
data that can be accessed and updated on each 
transaction 

7



www.manaraa.com

Embedded control systems

• These applications control and operates 
hardware devices

• Basically there are probably more embedded 
systems than other types of software

• Examples include software that control mobile 
phones, control of anti-lock braking system, and 
software that control home appliances and etc

• When more that one embedded system 
communicate, ie device to device communication 
lead to a field called IoT 

8



www.manaraa.com

Modelling and simulation 
systems

• These are applications that are developed for 
purpose of modelling physical process/situations

• They include separate interacting objects

• They are often computationally intensive thus 
require high performance parallel system for 
execution.

9



www.manaraa.com
10

More on Trends in Software 
Engineering

• Agile Software development

• Big Data

• ANDROID COMPUTING



www.manaraa.com
11

Trends in Software Engineering

• Agile Software development
– Systems are becoming increasingly reliant on software due

to needs for rapid fielding of interoperability, net-centricity,

and rapid adaptation to change. The need for rapid

adaptation and releases led to increased interest in agile

methods of software development.

– Project Management

• Approaches like Scrum and XP accelerate project cycles require

developers to interact with their managers more frequently but for shorter

periods as daily contact is the norm in most agile processes.



www.manaraa.com
12

Trends in Software Engineering

• Big Data
– “Big Data” is famously known for software system utilize 

the Operational Data (OD) for software design and 

maintenance activities.

– The structure and unstructured data in operational support 

tools have long been prevalent in software engineering 

field.

– It will be necessary to develop basic principles and tools 

that allow having effective use of software engineering in 

OD system



www.manaraa.com
13

Trends in Software Engineering

• ANDROID COMPUTING
– Proliferations of Android device and application services

have created demands that are applicable for software

testing techniques

– Previous research focuses on unit and GUI testing of 

Androids applications.

– EvoDroid is an evolutionary approach for system testing in 

Android applications.



www.manaraa.com

Trends on Software Engineering

• Requirement elicitation

Questionnaires/interviews  scenarios  use 
cases  ethnography  crowd sourcing

• Software development

Blockchain  Progressive Web app (PWAs) 
IoT  Artificial intelligence  Mixed reality 
cybersecurity 

14



www.manaraa.com
15

Challenges in Software Engineering

• The software design challenges regard the
design and development of novel software
engineering approaches, taking into account
the transition from monolithic applications
to applications developed based on the
adoption of microservices-based paradigms
and the need for novel approaches that
facilitate service/applications composition.



www.manaraa.com
16

Challenges in Software Engineering

• The software placement/implementation
challenges concern the adoption of novel
virtualization approaches and the
development of software that can take
advantage of them (e.g. IoT based software
in the form of containers, distributed
applications consisted of micro-services
packaged as uni-kernels) and the associated
security, distribution and delivery
challenges.



www.manaraa.com
17

Challenges in Software Engineering

• The orchestration middleware challenges
regard the need for design and development
of orchestration mechanisms able to
facilitate optimal placement and execution
of applications over programmable
infrastructure, taking into account the
programmability of the infrastructure as
well as the reconfigurability of the
applications’ execution context



www.manaraa.com
18

Challenges in Software Engineering

• The software quality challenges refer to the need for
adoption of approaches that will facilitate development of
qualitative software, such as collaboration driven software
development and testing processes ensuring
interoperability and user acceptance, e.g., introduction of
novel software engineering tools, adoption of open-source
solutions, quality assessment, revolutionary methods for
collecting feedback prior - during and after the
deployment, evolution of a validation and verification
culture for any software related product or service,
utilisation of available (customer) data for improving
assumptions during design/development, cloud services
interoperability frameworks.



www.manaraa.com
19

Challenges in Software Engineering

• The services/applications lifecycle management challenges
refer mainly to the need for interconnection of software
engineering and DevOps functionalities/approaches and
the support of continuous deployment approaches (e.g.,
tools for automated or semi-automated deployment of
applications taking into account the existence of several
components along with their requirements/constraints).



www.manaraa.com
20

Future Challenges

• Process, Methodologies and Productivity



www.manaraa.com
21

Future Challenges

• Process, Methodologies and Productivity
– In the context of process, methodologies and productivity, existing concepts need to be

redefined for meeting the current needs of the industry. Software process is a well-

investigated research area, but nowadays there are several new advancements in

technology and practice that introduce significant changes in this aspect. A new notion of

productivity should be defined, where “lines of code” is not anymore the right measure of

productivity, but software is measured in terms of its other qualities, usability, reliability,

scalability. New possibilities to easily gather user feedback and monitoring information

have the potential to enable an informed evolution of software while shorter development

cycles call for novel software production methodologies to actually enable controlled

management of such short development cycles. With DevOps there is also a need to

shift deployment decisions and resource management from the deployment phase to the

design phase of software engineering4, making efficient use of resources and supporting

architecture level analysis, optimization of deployment decisions, as well as automated

placement and orchestration of applications/services (e.g. specification of novel software

development paradigms based on micro-services) and adopting infrastructure-as-a-code

approaches for eliminating the needs for configuration placement and management over

programmable infrastructures, with an emphasis on their utilization from small

companies.



www.manaraa.com
22

Future Challenges

• Application Contexts
– Software is also the driving force behind the CPS and IoT paradigms, and their further evolution is

heavily linked to the ability of software to be both dependable and adaptable to real time changes,

thus enable different Application Contexts. The main challenges raised by IoT-enabled CPS include

the development of models, methods and design tools for IoT/CPS-enabled applications going beyond

formal methods research to create abstractions and formalisms for constructing and reasoning about

systems with diverse and more difficult-to-characterize components. Moreover, the needs brought by

CPS for novel methods of software Adaptability, Scalability and Maintainability, which are not

envisaged at design time as such systems, need to be continually modified and maintained to meet

changing requirements, run time adaptation of software Quality Assurance in large scale open CPS

environments able to deal with uncertainty and variability at the same time, software-awareness of

hardware to ensure Web-scale performance, flexibility and agility and meet the “software-defined

anything” paradigm.



www.manaraa.com
23

Future Challenges

• Design Patterns Development for a
Systems of Systems Approach

– As suggest above, and having in mind the different application context, there is also a need to further

research into design patterns development for a systems-of-systems approach. New patterns at the

architectural level describing the obligations/constraints to be fulfilled by the system in which the

software is running, and to validate and standardize them are needed and methods on how to apply

them into a dynamic, ever-changing context environments6. As such, issues such as frame of

references, unifying lexicons, visualisations, design architecture and interoperability, modelling

languages, tools integration and simulation and analysis should be tackled.



www.manaraa.com
24

Future Challenges

• Quality Guarantees
– Design patterns, as discussed previously, will allow software to reach a better level of quality.

However, they alone are not enough. The rapid growth in the last years of agile delivery methods in

the context of DevOps, as well as the need to reduce the development time as much as possible, call

for research approaches that can increase the anti-fragility of systems, reduce the meantime-to-

restore-service (MTRS), and develop accelerated methodologies to test quality through staging and

canary testbeds. In parallel, although Big Data offers the ability to capture large amounts of monitoring

data on the behaviour of an application, limited progress has been achieved in developing feedback

analysis tools, thus further research is envisaged in the architectural level, in the ability to pinpoint

specific root causes of performance degradation in the application code, and in the application of

machine learning methods to quality engineering7. Last but not least, there is a shortage of

standardized reference quality benchmarks for code and extra-functional properties in many classes

of applications and domains.



www.manaraa.com
25

Future Challenges

• Requirement Engineering
– One other core aspect of research, directly linked to any software engineering activity is that of

requirements engineering. Going away from monolithic and stand-alone applications and adopting a

Digital Single Market and Connected-world mentality increases complexity of knowledge capturing

and representation. New devices, services and even individuals become part of a software-powered

ecosystem and flexibility, constant evolution and interconnection contradicts current requirement

engineering outputs, as existing approaches do not account for dynamicity of use and unknown

requirements. There is the need for a radically divergent approach to capture emerging behaviour

from systems and users. Emerging technologies and trends are shedding light on potential research

topics such as multichannel big data analytics for requirements elicitation from large scale sites8 (like

smart-city infrastructures which blend humans, machines and generally system characteristics and

behaviour), novel methods for user engagement towards directly extracting requirements, privacy

respective indirect requirements extraction paradigms exploiting context-awareness of individuals

independently on the usage of a specific software, Human-Machine interface types taking into account

CPS and new technologies that blend human and computer interactions and decisions, different kind

of logics (both rational and behavioural), interconnection and interoperability with next-of-kin and other

unrelated (at first sight) systems of a greater ecosystem, placement of requirements into production

schedule dictates and relation with emerging business needs, unanimous description conventions and

abstraction representation levels.



www.manaraa.com
26

Future Challenges

• Privacy and Security by Design
– Privacy and security at design time as well as runtime of software is another important aspect that

should be tackled to comply with the evolution of software development methodologies (e.g.

microservices based software engineering approaches) along with the placement of applications over

virtualised environments in multiple formats (e.g. virtual machines, containers, unikernels). These

issues have become highly critical since the the threat and vulnerabilities landscape is continuously

expanding. Special care with regards to privacy and security has to be given in complex distributed

systems that in many cases have to handle big data volumes in a distributed way. Challenges include

the identification of contextual systems’ patterns related to privacy leaking code snippets, secure

computation of data structures, approaches for establishing optimality of encryption levels, continuous

source code assessment at design time as well as vulnerability assessment of the developed

applications9, secure packaging and placement mechanisms of the developed applications over

programmable infrastructure, orchestration mechanisms supporting the secure and efficient policy-

aware management of services and applications, real-time risk identification and assessment

techniques along with the triggering of the appropriate mitigation actions. Special emphasis should be

given in the topic of security and privacy by design software engineering approaches that contribute in

the generation of software artefacts that can operated in multi-IaaS environment with increased

security characteristics.



www.manaraa.com
27

Future Challenges

• Big Data for Software Engineering
– As datasets handled by software are constantly increasing, apart from supplying novel algorithms,

new system architectures and software infrastructures able to cope with the 5Vs of Big Data, it’s high

time for software itself to benefit from the intelligence extracted from large sets of information such as

software source code, commits and forks, bugs, warnings and notifications, issues from backtracking

systems, logs of any kind, commits, demographics, coding patterns, requirements, user behaviours,

user profiles, etc. Research challenges for software engineering in this direction include novel tools

employing techniques of machine learning and data mining to reveal hidden knowledge aspects and

extract information from sensor-based architectures, excavating knowledge which is impossible for

humans to dig out, but is necessary to be brought into human attention and affection for improving

software qualities, studying the evolution / discontinuation of application frameworks, open source

components, analysis of user trends and preferences and behaviour with systems to better

understanding users’ needs, tools and methods for identifying feature and performance improvement

opportunities, identifying root causes of failures and system halts based on log files (massively big

(>>GBs) or lightning-fast updating) coming from various complex distributed systems and

infrastructures10, insights collected at runtime on symptoms and context changes triggering

adaptations, and perform predictive and prescriptive analytics for proactive planning and preparation

of adaptation actions.



www.manaraa.com
28

Future Challenges

• Finally
– Finally, as a great proportion of the software developed today is of Open Source, there is a continuous

need towards accelerating Open Source Software Innovation. Many projects lack proper community

engagement and management structures, quality assurance, and a vision on how to contribute to the

European open digital market. OSS governance includes a number of technical challenges related to

software engineering and production processes, including methodologies and tool support for the

detection and disposition of contradictions, ambiguities, and gaps in requirements specifications,

decoupled architectures and production processes based on fault defensive and tolerant programming

styles for distributed developers teams with different skill sets, interests and motivations,

methodologies and tools for impact analyses of code additions and modifications11. Furthermore,

OSS production processes also include organisational challenges that have to be met by an

interdisciplinary approach aiming at the creation and management of communities of code

contributors, reviewers, testers, first level users, etc. and a comprehensive development and

communication approach combining existing tools under a set of common, formalized set of

methodologies



www.manaraa.com
30


